ул. Астраханская, 62/66

Пн-Пт 9.00-19.00
Суббота 9.00-16.00

Чем заполнены альвеолы в легких в норме

image

Испокон веков в сознании людей тесно переплелись представления о жизни и дыхании.

На вопрос: «Подчиняется ли дыхание нашей воле?» — большинство людей ответит: «Да, подчиняется». Но такой ответ не совсем точен. Мы можем задержать дыхание всего лишь на несколько минут, не больше. Чередование вдохов и выдохов подчиняется особым, не подвластным нашей воле закономерностям, и останавливать дыхание можно лишь в ограниченных пределах.

Каков же механизм дыхания? Легкие благодаря эластичности своей ткани способны сжиматься и разжиматься. Плотно прилегая к внутренней поверхности грудной клетки, в которой благодаря работе мышц и диафрагмы давление ниже атмосферного, они пассивно следуют за ее движениями. Грудная клетка расширяется, объем легких увеличивается, внутрь их устремляется атмосферный воздух — так происходит вдох. С уменьшением объема грудной клетки и соответственно легких воздух из них выдавливается в окружающую среду — так происходит выдох.

Движения грудной клетки обусловлены согласованными сокращениями и расслаблениями межреберных мышц и грудобрюшной преграды — диафрагмы, отделяющей грудную полость от брюшной. В тот момент, когда все эти мышцы одновременно сокращаются, ребра ( 1 на рисунке), подвижно соединенные с позвоночником, принимают более горизонтальное положение, а диафрагма, натягиваясь, становится почти плоской (2) — происходит увеличение объема грудной клетки. Затем с расслаблением мышц ребра наклоняются (3), а диафрагма поднимается (4) и объем грудной клетки уменьшается. Таким образом, мы не расширяем грудную клетку с помощью вдоха, а, наоборот, способны произвести вдох благодаря расширению грудной клетки.

Ритмичные сокращения и расслабления мышц, изменяющих объем грудной клетки, регулируются центральной нервной системой. К межреберным мышцам подходят нервные окончания от грудной части спинного мозга (5), а к диафрагме — из его шейного отдела. Деятельность спинного мозга в свою очередь всецело подчиняется импульсам, которые поступают из головного мозга. В нем находится область, получившая название дыхательного центра (6).

Дыхательный центр способен к автоматической беспрерывной деятельности, благодаря которой поддерживается известная ритмичность в увеличении и уменьшении объема легких. Клетки дыхательного центра определяют количество углекислоты, которая поступает в мозг вместе с кровью. Как только процентное содержание углекислоты превышает норму, дыхательный центр выдает сигнал. Он распространяется по спинному мозгу и нервам, несущим сигналы к мышцам грудной клетки. В результате дыхание углубляется и учащается, организм, получает кислород из атмосферного воздуха, увеличивает выделение углекислоты.

Перед тем как попасть в легкие, вдыхаемый воздух проходит через носоглотку, трахею и бронхи (7). Здесь он увлажняется и согревается; часть веществ, загрязняющих воздух, оседает на слизистых оболочках носоглотки, трахеи, бронхов и затем удаляется оттуда вместе с мокротой во время кашля и чихания.

Бронхиолы и альвеолы.

Каждый бронх (а их всего два), войдя в легкое, делится на все более и более мелкие бронхиолы (8). Диаметр их равен нескольким миллиметрам. На конце таких бронхиол подобно кисти винограда располагаются мельчайшие пузырьки — альвеолы (9). Размер альвеол колеблется от 0,2 до 0,3 миллиметра. Но их очень много, около 350 миллионов, и общая площадь внутренней поверхности всех альвеол равняется 100-120м2, то есть приблизительно в 50 раз больше поверхности нашего тела.

Стенки альвеол образует всего лишь один слой особых клеток, к которым прилегают многочисленные кровеносные капилляры (10). Именно здесь, в месте соприкосновения альвеол с мельчайшими кровеносными сосудами, и производится обмен газами между атмосферным воздухом и кровью.

Но неправильно было бы представлять дело так, что во время вдоха все альвеолы целиком заполняются атмосферным воздухом, а во время выдоха полностью освобождаются от углекислого газа. Состав воздуха, находящегося в альвеолах, в процессе дыхания меняется незначительно. После вдоха объем кислорода в альвеолярном воздухе увеличивается лишь на 0,6 процента, а количество углекислоты после выдоха уменьшается на те же 0,6 процента.

Следовательно, альвеолярный воздух выполняет своеобразную буферную роль, благодаря чему кровь сама непосредственно не контактирует с вдыхаемым воздухом.

Находясь в состоянии покоя, человек в минуту делает в среднем 16-18 вдохов и выдохов. За это время через легкие проходит около 8 литров воздуха. Во время возрастания физической нагрузки это количество может возрасти до 100 литров в минуту. Человек может жить и о том случае, если дыхательная поверхность его легких будет намного уменьшена.

Большой запас возможностей легких позволяет удалять значительные области легочной ткани, когда она поражена, скажем, туберкулезным процессом или злокачественной опухолью.

Когда вдыхаемый воздух загрязнен, процесс газообмена в легких затрудняется. Если же долгое время дышать таким воздухом, могут возникнуть заболевания легких и дыхательных путей. Поэтому необходимо регулярно проветривать помещения, не следует курить, особенно там, где люди работают или отдыхают. Свободное время полезно проводить в скверах, парках, за городом — там, где много свежего, чистого, оздоровляющего воздуха.

Анатомические образования, о которых пойдет речь в данной работе, входят в состав двух систем человеческого организма: дыхательной и пищеварительной. Внешне напоминающие лунки или ячейки, они имеют совершенно разное гистологическое строение и выполняют непохожие функции. В процессе эмбриогенеза развиваются из двух зародышевых листков – энтодермы и мезодермы. Это альвеолы человека. Их содержат воздухоносная ткань легких и углубления в костях верхней и нижней челюсти. Ознакомимся с этими структурами подробнее.

image

Внешнее строение структурных единиц легочной ткани

Легкие человека – это парные органы, занимающие почти всю полость грудной клетки и обеспечивающие поступление в клетки организма кислорода и удаление избытка углекислоты и воды. Постоянный газообмен возможен благодаря уникальному строению легочной ткани, состоящей из огромного количества микроскопических мешковидных образований. Выпячивание стенок паренхимы органов дыхания, напоминающее пчелиные соты – вот что такое альвеола. С соседними структурами она связана межальвеолярной перегородкой, состоящей из двух эпителиальных слоев, содержащих клетки плоской формы. Между ними находятся волокна коллагена и ретикулярной ткани, межклеточное вещество и капилляры. Все выше перечисленные структуры называются интерстицием. Нужно отметить, что сеть кровеносных сосудов в легких является самой большой и разветвленной в человеческом организме. Объясняется это тем, что с их помощью в альвеолах легких обеспечивается транспорт углекислого газа из венозной крови в альвеолярную полость и переход кислорода из нее в кровь.

image

Аэрогематический барьер

Поступившая во время вдоха порция воздуха попадает в альвеолы легких, которые собраны, подобно виноградным гроздям, на тончайших трубочках – бронхиолах. От кровотока их отделяет трехкомпонентная структура, толщиной 0,1-1,5 мкм, названная аэрогематическим барьером. В него входят мембраны и цитоплазма альвеолярных элементов, части эндотелия и его жидкое содержимое. Для лучшего понимания, что такое альвеола и каковы ее функции, нужно помнить, что диффузия газов в легких невозможна без таких структур, как межальвеолярные перегородки, аэрогематический барьер, а также интерстиций, который содержит фибробласты, макрофаги и лейкоциты. Важную функцию выполняют альвеолярные макрофаги, расположенные внутри альвеолярных перегородок и вблизи капилляров. Здесь они расщепляют вредные вещества и частицы, поступившие в легкие при вдохе. Макрофаги также могут фагоцитировать эритроциты, попавшие в альвеолярные пузырьки в случае, если у человека диагностируют сердечную недостаточность, отягощенную симптомами застоя крови в легких.

image

Механизм внешнего дыхания

Клетки организма обеспечиваются кислородом и освобождаются от углекислого газа благодаря крови, проходящей через капиллярную сеть альвеол. Через аэрогематический барьер в противоположные стороны непрерывно движутся кислород и диоксид углерода, высвобождаемый из карбонатной кислоты и ее солей ферментом карбоангидразой. Она находится в красных кровяных клетках. О масштабах диффузии можно судить исходя из следующих цифр: около 300 млн альвеол, образующих легочную ткань, составляют примерно 140 м 2 поверхности газообмена и обеспечивают процесс внешнего дыхания. Приведенные выше факты объясняют, что такое альвеола и какую роль она выполняет в обмене веществ нашего организма. По сути, она является главным элементом, обеспечивающим процесс дыхания.

Гистологическое строение альвеол

Рассмотрев анатомию клеток легочной ткани, остановимся теперь на их видовом разнообразии. В состав альвеолы входят два вида элементов, названные клетками I и II типа. Первые – плоской формы, способные адсорбировать частицы пыли, дыма и грязи, находящиеся во вдыхаемом воздухе. Важную функцию в них выполняют пиноцитозные пузырьки, заполненные белковым субстратом. Они уменьшают поверхностное натяжение альвеол и препятствуют их спаданию во время выдоха. Еще один элемент клеток I типа – замыкающие структуры, служащие буфером и не позволяющие межклеточной жидкости проникнуть в полость альвеолы, заполненную воздухом. Группы овальных клеток II типа имеют цитоплазму, напоминающую пену. Они обнаруживаются в альвеолярных стенках, способны к активному митозу, это и обуславливает регенерацию и рост элементов легочной ткани.

image

Альвеола в стоматологии

Углубление в челюсти, в котором располагается зубной корень – вот что такое альвеола. Ее стенка образована компактным веществом, имеющим вид пластинки. Она содержит остеоциты, а также соли кальция, фосфора, цинка и фтора, поэтому достаточно твердая и прочная. Пластинка прикреплена к костным балкам челюсти и имеет пародонтные тяжи в виде коллагеновых волокон. Также она обильно снабжается кровью и оплетена нервными окончаниями. После удаления зуба остается сильно выступающая стенка наружной части лунки и костной перегородки. Заживают альвеолы зубов в течение 3-5 месяцев путем образования вначале грануляционной ткани, сменяющуюся на остеоидную, а затем на зрелую костную ткань челюсти.

Лекция №4

1. Везикуляpное дыхание, механизм формирования, клиническая характеристика.

2. Количественные изменения везикуляpного дыхания в норме и патологии, диагностическое значение

3. Качественные изменения везикуляpного дыхания в патологии, диагностическое значение.

4. Лаpинго-тpахеальное дыхание, механизм формирования, клиническая характеристика.

5. Бpонхиальное дыхание: причины и механизм формирования, варианты, клиническая характеристика.

6. Сухие хpипы: причины и механизм образования, виды, клиническая характеристика.

7. Влажные хpипы: причины и механизм образования, виды, клиническая характеристика.

8. Кpепитация: причины, механизм образования, виды, клиническая характеристика. Отличия от хpипов и шума тpения плевpы.

9. Шум тpения плевpы: причины и механизм образования, клиническая характеристика, отличия от кpепитации.

Аускультация (в переводе с латинского — выслушивание) – физикальный метод исследования, основанный на выслушивании звуковых явлений, возникающих при нормальной работе или патологических движениях внутренних органов.

По технике выделяют следующие виды аускультации:

Прямая (непосредственная) аускультация проводится путем прикладывания уха врача к поверхности тела человека. Преимущества: лучше выслушиваются низкие тоны сердца, тихое бронхиальное дыхание; звуки не искажаются. Недостатки: этот способ неприемлем для аускультации в надключичных ямках и подмышечных впадинах из-за неплотного прижатия ушной раковины к поверхности тела, и негигиеничен.

Непрямая (опосредованная) аускультация проводится с помощью инструментов – стетоскопа или фонендоскопа. Преимущества: этот способ более гигиеничен, звуки воспринимаются более четко. Недостатки: происходит искажение звуков из-за наличия в инструменте мембраны и трубок.

Аускультация легких в норме.

При аускультации легких в первую очередь обращают внимание на основные дыхательные шумы, затем на дополнительные, или побочные, дыхательные шумы.

Основные дыхательные шумы лучше выслушивать при дыхании больного через нос с закрытым ртом, а побочные – при глубоком дыхании через открытый рот.

В норме основным дыхательным шумом является везикулярное дыхание.

Везикулярное дыхание – это нормальный дыхательный шум, который выслушивается над всей поверхностью легких. По месту образования везикулярное дыхание является альвеолярным. Механизм возникновения везикулярного дыхания обусловлен колебаниями напряженных эластичных стенок альвеол на вдохе и в начале выдоха. В первой трети выдоха стенки альвеол еще напряжены, поэтому их колебания слышны, последние две трети выдоха спадение альвеол происходит бесшумно.

Признаки везикулярного дыхания:

— выслушивается над всей поверхностью легких

— соотношение вдоха и выдоха 3:1

Ларинготрахеальное дыхание – это дыхательный шум, возникающий в гортани и трахее в период прохождения воздуха через голосовую щель.

Механизм возникновения ларинготрахеального дыхания связан с образованием турбулентного потока при прохождении воздуха через узкую голосовую щель в широкое пространство гортани.

Признаки ларинготрахеального дыхания:

— выслушивается над гортанью и трахеей: спереди от щитовидного хряща до перехода рукоятки в тело грудины, сзади от 7-го шейного позвонка до 3-4 грудного.

— соотношение вдоха и выдоха 1:2, то есть ларинготрахеальное дыхание слышно во время всего вдоха и всего выдоха. Причем на выдохе громкость ларинготрахеального дыхания несколько больше, чем на вдохе. Это связано с тем, что во время выдоха голосовая щель уже, чем на вдохе, что усиливает завихрения воздуха, делая их более слышимыми на всем протяжении выдоха.

Аускультация легких в патологии.

Изменения везикулярного дыхания:

1. Количественные (усиление, ослабление)

2. Качественные (жесткое, саккадированное, с удлиненным выдохом)

К количественным изменениям везикулярного дыхания относятся усиление и ослабление. При количественных изменениях везикулярного дыхания меняется только громкость шума, но сохраняются качественные характеристики везикулярного дыхания: нежный дующий шум с соотношением вдоха и выдоха 3:1.

Громкость везикулярного дыхания зависит от:

1. Толщины грудной стенки, состояния плевры и плевральной полости.

2. Проходимости дыхательных путей, объема и скорости поступающего в альвеолы воздуха;

3. Эластичности легочной ткани;

4. Количества одновременно раскрывающихся альвеол.

Ослабление везикулярного дыхания в норме наблюдается при:

— утолщении грудной стенки за счет чрезмерного развития мышц или жировой ткани

— во сне, когда уменьшается скорость поступающего в альвеолы воздуха.

Физиологическое ослабление везикулярного дыхания всегда одинаково в симметричных областях.

Ослабление везикулярного дыхания в патологии возникает при:

1. нарушении проходимости дыхательных путей, например, долевого бронха с развитием неполного обтурационного ателектаза (опухоль бронха, инородное тело, сдавление бронха извне). Ослабление дыхания будет в зоне, вентилируемой этим бронхом.

2. Снижении эластичности легочной ткани при эмфиземе, пневмосклерозе, первой и третьей стадиях крупозной пневмонии, отеке легких.

3. Снижении количества функционирующих альвеол при очаговой пневмонии, очаговом туберкулезе, очаговом пневмосклерозе, полостях в легочной ткани, не сообщающихся с бронхом (абсцесс, киста).

4. Утолщении листков плевры (сухой плеврит, плевральные спайки), скопление жидкости или воздуха в плевральной полости (пневмоторакс, гидроторакс или экссудативный плеврит)

Внелегочные причины ослабления везикулярного дыхания:

· Нарушение функции дыхательной мускулатуры (миастения, миопатия, паралич мышц диафрагмы, диафрагмит)

· Ограничение глубины дыхания при болях: травмы грудной клетки, миозит, перелом ребер, межреберная невралгия

· Высокое стояние диафрагмы при ожирении, метеоризме, асците, большой кисте брюшной полости

Физиологическое усиление везикулярного дыхания наблюдается

— у лиц с тонкой грудной стенкой, слабом развитии мышц и подкожного жирового слоя, преимущественно у астеников

— при тяжелой физической работе.

Физиологическое усиление везикулярного дыхания одинаково с обеих сторон.

Усиление везикулярного дыхания в патологии чаще носит викарный (компенсаторный) характер, оно выявляется на здоровой стороне, когда с другой стороны легкое функционирует недостаточно (обширная пневмония, пневмоцирроз, обтурационный ателектаз, пневмоторакс, экссудативный плеврит). Локальное (ограниченное) усиление везикулярного дыхания нередко отмечается по соседству с очагами уплотнения легочной ткани, что является компенсаторным явлением.

· при глубоком дыхании, обусловленном патологией ЦНС, раздражением дыхательног центра при кетоацилдотической, уремической коме.

К качественным изменениям везикулярного дыхания относятся жесткое, саккадированное и везикулярное дыхание с удлиненным выдохом.

Жесткое дыхание – это особое везикулярное дыхание, при котором изменяется тембр (нет мягкости) и нарушается соотношение вдоха к выдоху в сторону 1:1. Чаще выслушивается над обеими половинами грудной клетки, но может определяться и на ограниченном участке.

Место возникновения жесткого дыхания – бронхи. Причины возникновения связаны с неравномерным сужением просвета бронхов: воспалительный или невоспалительный отек слизистой, скопление вязкой слизи, либо разрастание соединительной ткани в бронхах при хроническом воспалении. Механизм возникновения заключается в образовании турбулентных воздушных потоков при прохождении через неравномерно суженные бронхи, что придает везикулярному дыханию такие черты как грубость, неровность, шероховатость. При этом по продолжительности вдоха и выдох становятся равными.

Жесткое дыхание – типичный аускультативный признак острого и хронического бронхита, невоспалительного отека стенки бронхов при левосердечной недостаточности.

Вариантом качественного изменения везикулярного дыхания является дыхание с удлиненным выдохом.

Диагностическое значение: возникает тогда, когда на выдохе альвеолы долго остаются напряженными и колебания их стенок слышны дольше, чем в норме. Это встречается при затруднении опорожнения альвеол от воздуха из-за сужения терминальных бронхов, что наблюдается при:

Также везикулярное дыхание с удлиненным выдохом может возникать при эмфиземе легких. Выдох – процесс пассивный, он совершается за счет эластической тяги легких. При эмфиземе продолжительность выдоха удлиняется из-за снижения эластичности легочной ткани.

Аускультативно – независимо от продолжительности вдоха, выдох становится равным ему или даже длиннее.

Третья разновидность качественного изменения везикулярного дыхания – саккадированное, или прерывистое дыхание. При этом сохраняется соотношение вдоха и выдоха 3:1, но вдох прерывистый, состоит как бы из нескольких отдельных коротких вдохов.

Саккадированное дыхание над всей поверхностью легких может возникнуть при заболеваниях дыхательной мускулатуры, проявляющихся судорожными сокращениями. Это отмечается при нервной дрожи у возбудимых субъектов, при дрожи, плаче, разговоре у детей.

Выслушивание саккадированного дыхания на ограниченном участке грудной клетки чаще является признаком очагового воспаления легких (очаговая пневмония, очаговый туберкулез).

Бронхиальное дыхание – это проведенное по бронхам на периферию к грудной стенке ларинготрахеальное дыхание. В норме звук бронхиального дыхания не выслушивается на поверхности грудной клетки, так как во-первых, он заглушается звуком везикулярного дыхания, во-вторых, воздух, содержащийся в альвеолах, препятствует проведению этого звука на поверхность грудной клетки.

Условиями для выслушивания бронхиального дыхания являются:

1. отсутствие воздуха в легочной ткани

2. отсутствие везикулярного дыхания

Этим условиям соответствуют следующие причины:

· 2 стадия крупозной пневмонии,

· полный компрессионный ателектаз.

При этих процессах легкое безвоздушно, соответственно, везикулярного дыхания нет.

3. появление патологической воздушной полости в легком, сообщающейся с бронхом. Такая полость называется резонирующей.

При наличии резонирующей полости возможны следующие варианты бронхиального дыхания: амфорическое и металлическое дыхание.

Амфорическое дыхание (амфора — кувшин) – низкое бронхиальное дыхание, возникает при наличии полости размером 5-6 см с уплотненными стенками, сообщающейся с бронхом через узкую щель. Этот звук легко имитировать, подув над горлышком пустого графина или бутылки. Перкуторно амфорическому дыханию соответствует звук треснувшего горшка.

Металлическое дыхание отличается более высоким тембром звучания. Возникает при открытом пневмотораксе, когда плевральная полость сообщается через отверстие в висцеральной плевре с достаточно крупным бронхом. Металлическое дыхание всегда сочетается с металлическим тимпанитом.

Стенотическое дыхание – это вариант бронхиального дыхания, которое выслушивается над участками сужения гортани, трахеи и крупных бронхов.

Причины: опухоль, отек, инородное тело гортани, трахеи и крупных бронхов.

У детей с более тонкой стенкой грудной клетки и хорошей эластичностью альвеол отмечается пуэрильное (от лат puer — мальчик) дыхание. Это изменение везикулярного дыхания в виде усиления и появления бронхиального оттенка, так как бронхи у детей более широкие, а толщина легочной ткани меньше, чем у взрослых.

Дополнительные дыхательные шумы, причины,

механизм их образования, диагностическое значение.

Дополнительные дыхательные шумы образуются в бронхах, патологических полостях, в альвеолах и плевральной полости. В норме они не выслушиваются. К дополнительным дыхательным шумам относятся:

· Шум трения плевры

Хрипы – это дополнительные дыхательные шумы, которые образуются в бронхах или в патологических полостях. Хрипы делятся на сухие и влажные.

Механизм образования связан с неравномерным сужением просвета бронхов и появлением турбулентных потоков воздуха. Неравномерное сужение может быть обусловлено воспалительным и невоспалительным отеком слизистой бронхов, появлением в просвете бронхов вязкого секрета, разрастанием соединительной ткани или опухоли в стенке бронха, бронхоспазмом.

Сухие хрипы принято подразделять на:

· Высокие – дискантовые, свистящие

· Низкие – басовые, гудящие, жужжащие

Высокие свистящие хрипы – образуются в мелких бронхах.

· Спазм или отек мелких бронхов и бронхиол при бронхиальной астме и бронхиолите.

Сухие свистящие хрипы лучше слышны на выдохе, так как просвет бронхов на выдохе более сужен, нежели на вдохе. В положении лежа их количество возрастает – из-за повышения тонуса вагуса и усиления бронхоспазма. После покашливания практически не меняются. Выслушиваются над всей поверхностью легких, нередко слышны на расстоянии

Низкие свистящие хрипы – образуются в бронхах среднего, крупного калибра и даже в трахее в результате накопления в их просвете липкого, вязкого секрета, который, налипая на стенки бронхов, сужает их просвет. Неравномерное сужение просвета бронхов также может быть обусловлено воспалительным и невоспалительным отеком стенки бронхов, разрастанием соединительной ткани или опухоли в стенке бронха. При прохождении воздуха через неравномерно суженные бронхи, появляются турбулентные потоки, и возникают звуки, напоминающие гудение или жужжание. Разновидностью сухих хрипов являются музыкальные, которые образуются при прохождении воздушного потока, особенно на вдохе, через перемычки в виде струны, образованные вязким секретом.

Низкие сухие хрипы лучше слышны на вдохе, так как на вдохе скорость воздушного потока больше, могут несколько изменяться после покашливания из-за перемещения вязкой мокроты по бронхиальному дереву.

Диагностическое значение низких сухих хрипов: острый и хронический бронхит с поражением бронхов среднего и крупного калибра.

Место их возникновения – бронхи любого калибра и патологические полости, содержащие жидкий секрет (экссудат, отечную жидкость, кровь или жидкий гной). Воздух, проходя через секрет, образует пузырьки, которые лопаются на поверхности жидкости и создают своеобразный звуковой феномен, называемый влажными хрипами. Величина пузырьков зависит от диаметра бронха или полости, где они возникли, поэтому различают:

· Крупнопузырчатые влажные хрипы.

Крупнопузырчатые влажные хрипы выслушиваются над крупными патологическими полостями с жидким содержимым (туберкулезная каверна, абсцесс легкого). Среднепузырчатые влажные хрипы образуются в крупных бронхах или мелких патологических полостях (бронхит, стафилококковая пневмония). Мелкопузырчатые влажные хрипы образуются в мелких бронхах и бронхиолах при накоплении в них жидкого секрета (бронхиолит, пневмония, отек легких).

Влажные хрипы подразделяют на:

Незвучные влажные хрипы слышны в виде приглушенного звука. Они возникают в бронхах при условии сохранения воздушности легочной ткани, что затрудняет проведение звука на поверхность грудной стенки.

Диагностическое значение незвучных влажных хрипов:

· Острый или обострение хронического бронхита,

· Левожелудочковая недостаточность с отеком легких

Звучные влажные хрипы выслушиваются более ясно, громко, как бы возле уха. Они образуются тогда, когда вокруг бронха имеется безвоздушная, уплотненная легочная ткань, что создает условия для хорошего проведения хрипов на поверхность грудной клетки.

Диагностическое значение звучных влажных хрипов:

· 2 стадия крупозной пневмонии,

· резонирующая полость в легких, то есть полость, сообщающаяся с бронхом (абсцесс легкого, туберкулезная каверна, распадающаяся опухоль).

Влажные хрипы выслушиваются в обе фазы дыхания, при этом на вдохе их количество и звучность больше чем на выдохе, что обусловлено скоростью воздушного потока – на вдохе она больше. Влажные хрипы отличаются значительным непостоянством, после форсированного дыхания, после нескольких глубоких вдохов они могут исчезнуть или измениться или появиться вновь.

Место образования крепитации – альвеолы. Механизм образования связан с наличием в полости альвеол небольшого количества жидкого секрета, который вызывает слипание стенок альвеол на выдохе. На вдохе под действием воздушного потока альвеолы с треском разлипаются, что и образует крепитацию.

Аускультативно крепитация представляет собой тихое, едва уловимое потрескивание, которое напоминает звук, получаемый при растирании между пальцами у самого уха пучка волос.

Крепитация бывает звучная и незвучная.

Звучная крепитация выслушивается при уплотнении легочной ткани, что способствует лучшему проведению звука. Диагностическое значение звучной крепитации:

· 1 и 3 стадии крупозной пневмонии,

· инфильтративный туберкулез легких,

Незвучная крепитация возникает при застойных явлениях в легких при левосердечной недостаточности, когда отсутствует уплотнение легочной ткани. При этом крепитация выслушивается в задне-нижних отделах легких, в то время как звучная крепитация при пневмонии выслушивается только над участком воспаления.

Крепитацию можно выслушать у больных с экссудативным плевритом в зоне компрессионного ателектаза (треугольник Гарленда), а также при неполном обтурационном ателектазе.

Нередко крепитацию трудно отличить от влажных мелкопузырчатых хрипов.

Крепитация выслушивается только на высоте вдоха (хрипы на вдохе и выдохе), после покашливания крепитация не меняется и не исчезает.

Шум трения плевры.

· Появлении неровностей, шероховатостей на поверхности плевральных листков.

· Исчезновении жидкости в плевральных полостях.

Диагностическое значение шума трения плевры:

· сухой плеврит, при экссудативном плеврите может быть в самом начале заболевания (при появлении выпота шум исчезает, а при рассасывании вновь появляется),

· уремия при ОПН и ХПН, когда на плевре откладываются кристаллы мочевины.

· обезвоживание (профузная рвота, понос, кровопотеря).

Шум трения плевры может напоминать шорох листа, шум шелка, но может быть и очень грубым, громким, напоминающим хруст снега, скрип кожаного ремня. Наиболее часто выслушивается в нижне-боковых отделах грудной клетки, подмышечных областях, то есть местах наибольшей подвижности легких и наиболее частой локализации воспалительных процессов плевры.

При дифференциальной диагностике шума трения плевры и других побочных дыхательных шумов надо учитывать следующее:

· Шум трения плевры выслушивается в обе фазы дыхания (в отличие от крепитации);

· Шум трения плевры после покашливания не изменяется и не исчезает (в отличие от хрипов);

· Усиливается при давлении фонендоскопом, при наклоне туловища пациента в больную сторону из-за сближения листков плевры;

· Шум трения плевры часто сопровождается болевыми ощущениями в зоне локализации;

Не нашли то, что искали? Воспользуйтесь поиском:

Ссылка на основную публикацию
Похожие публикации